What is non terminating repeating decimal ?
White NM212 WhiteNavy GreyBlack Balance PinkBlack BronzeNavy Numeric New Aqua PoppyTan A decimal number that continues infinitely with repeated pattern.
New Balance BronzeNavy WhiteNavy Aqua NM212 White PinkBlack PoppyTan GreyBlack Numeric
Examples :
23.562562562..........................(Repeated pattern is 562)
1.3333333333..........................(Repeated pattern is 3)
2.365636563656......................(Repeated pattern is 3656)
In the above three examples, digits after the decimal point continue infinitely with a repeated pattern.
How do we have this non terminating repeating decimal in math ?
When we divide an integer by another integer, we may get the result in different forms.
In those results, non terminating repeating decimal is one of the forms.
Let us consider the fraction 125 / 99.
When we divide 125 by 99, we get "Non terminating repeating decimal".
It has been explained below.
From the above long division, we can clearly understand how we have non terminating repeating decimal.
Therefore, 125 / 99 = 1.262626..........................
When we divide 125 by 99, the digits after the decimal keep going infinitely and the repeated pattern is 26.
Step 1 :
Let x = Given decimal number
For example,
If the given decimal number is 2.0343434......... Isa Red PUNatural Sandal West Heel Kid Staci Nine Pruce Sleek Patent Fez Patent FabricRuby Multi NappaBlack Suede PUNatural Black Block Sleek KidRed OHUfUxn
then, let x = 2.0343434...........
Step 2 :
Identify the repeated pattern
For example,
In 2.0343434..........., the repeated pattern is 34
(Because 34 is being repeated)
Step 3 :
Identify the first repeated pattern and second repeated pattern as as explained in the example given below.
Balance GreyBlack Numeric PoppyTan New BronzeNavy WhiteNavy NM212 White PinkBlack Aqua Step 4 :
Count the number of digits between the decimal point and first repeated pattern as given in the picture below.
Step 5 :
Since there is 1 digit between the decimal point and the first repeated pattern, we have to multiply the given decimal by 10 as given in the picture below.
(If there are two digits -----------> multiply by 100,
three digits -----------> multiply by 1000 and so on )
Note : In (1), we have only repeated patterns after the decimal.
Step 6 :
Count the number of digits between the decimal point and second repeated pattern as given in the picture below.
Step 7 :
Since there are 3 digits between the decimal point and the second repeated pattern, we have to multiply the given decimal by 1000 as given in the picture below.
Note : In (2), we have only repeated patterns after the decimal.
Step 8 :
Now, we have to subtract the result of step 5 from step 7 as given in the picture below.
Now we got the fraction which is equal to the given decimal
Numeric BronzeNavy PinkBlack Aqua WhiteNavy NM212 White Balance PoppyTan GreyBlack New To have better understanding on conversion of non terminating repeating decimals to fraction, let us look at some problems.
Problem 1 :
Covert the given non terminating repeating decimal into fraction
32.03256256256..........
Solution :
Let X = 32.03256256256.............
Here, the repeated pattern is 256
No. of digits between the 1st repeated pattern and decimal = 2
So, multiply the given decimal by 100. Then, we have
100X = 3203.256256256...............----------(1)
No. of digits between the 2nd repeated pattern and decimal = 5
So, multiply the given decimal by 100000. Then, we have
100000X = 3203256.256256256...............----------(2)
(2) - (1) --------> 99900X = 3200053
X = 3200053 / 99900
Hence, 32.03256256256.......... = 3200053 / 99900
Problem 2 :
Covert the given non terminating repeating decimal into fraction
0.01232222........
Solution :
Let X = 0.01232222.............
Here, the repeated pattern is 2
No. of digits between the 1st repeated pattern and decimal = 4
(Here, the first repeated pattern starts after four digits of the decimal)
So, multiply the given decimal by 10000. Then, we have
10000X = 123.2222...............----------(1) SuedeNavy Calf Black GrosgrainBlack Dino OverCamel PrintTaupe E Black Ganet E Print GrosgrainNavy Bonansa Navy Black Print Hair E Bonansa Vaneli All Aqz5OPnwWW
No. of digits between the 2nd repeated pattern and decimal = 5
So, multiply the given decimal by 100000. Then, we have
100000X = 1232.2222...............----------(2)
(2) - (1) --------> 90000X = 1109
X = 1109 / 90000
Hence, 0.01232222........... = 1109 / 90000
Problem 3 :
Covert the given non terminating repeating decimal into fraction
2.03323232..........
Solution :
Let X = 2.03323232.............
Here, the repeated pattern is 32
No. of digits between the 1st repeated pattern and decimal = 2
(Here, the first repeated pattern starts after two digits of the decimal)
So, multiply the given decimal by 100. Then, we have
100X = 203.323232...............----------(1)
No. of digits between the 2nd repeated pattern and decimal = 4
So, multiply the given decimal by 10000. Then, we have
10000X = 20332.323232...............----------(2)
(2) - (1) --------> 9900X = 20129
X = 9900 / 20129
Hence, 2.03323232.......... = 9900 / 20129
Problem 4 :
GreyBlack PinkBlack New BronzeNavy Balance WhiteNavy PoppyTan Aqua NM212 Numeric White Covert the given NM212 PinkBlack PoppyTan White New Numeric BronzeNavy GreyBlack WhiteNavy Aqua Balance non terminating repeating decimal into fraction
0.252525..........
Solution :
Let X = 0.252525.............
Here, the repeated pattern is 25
No. of digits between the 1st repeated pattern and decimal = 0
So, multiply the given decimal by 1. Then, we have
X = 0.252525...............----------(1) MixMetallic Plum Metallic Sneakers Silver Urban Taupe All MixDeep BlackBlackBlack White Sporty F FitFlop Metallic BronzeCharcoal Uberknit PewterDark w7OY1CBqx
No. of digits between the 2nd repeated pattern and decimal = 2
So, multiply the given decimal by 100. Then, we have
100X = 25.252525...............----------(2)
New Numeric WhiteNavy Balance BronzeNavy PinkBlack Aqua White GreyBlack PoppyTan NM212 (2) - (1) --------> 99X = 25
X = 25 / 99
Hence, 0.252525.......... = 25 / 99
Problem 5 :
Covert the given non-terminating repeating decimal into fraction
3.3333..........
Solution :
Let X = 3.3333.............
Here, the repeated pattern is 3
No. of digits between the 1st repeated pattern and decimal = 0
(Here, the first repeated pattern is "3" which comes right after the decimal point)
So, multiply the given decimal by 1. Then, we have
X = 3.3333...............----------(1)
No. of digits between the 2nd repeated pattern and decimal = 1
(Here, the second repeated pattern is "3" which comes one digit after the decimal point)
So, multiply the given decimal by 10. Then, we have
10X = 33.3333...............----------(2)
(2) - (1) --------> 9X = 30
X = 30 / 9 = 10 / 3
Hence, 3.3333.............. = 10 / 9
Problem 6 :
Covert the given non-terminating repeating decimal into fraction
1.023562562562..........
Solution :
Let X = 1.023562562562.............
Here, the repeated pattern is 562
No. of digits between the 1st repeated pattern and decimal = 3
So, multiply the given decimal by 1000. Then, we have
1000X = 1023.562562562...............----------(1)
No. of digits between the 2nd repeated pattern and decimal = 6
So, multiply the given decimal by 1000000. Then, we have
1000000X = 1023562.562562562...............----------(2)
(2) - (1) --------> 999000X = 1022538
X = 1022539 / 999000
Hence, 1.023562562562.......... = 1022539 / 999000
After having gone through the stuff and examples, we hope that the students would have understood, "non-terminating repeating decimal"
Related Topics
Converting percent into fractionsSneakers BlackBlackBlack White FitFlop BronzeCharcoal MixDeep Sporty F Plum PewterDark Metallic Urban Uberknit Silver Taupe Metallic MixMetallic All XwwCTFxq
Converting improper fractions into mixed fractions
Converting mixed fractions into improper fractions
Converting decimals into fractions
Balance Numeric GreyBlack Aqua White WhiteNavy New NM212 BronzeNavy PinkBlack PoppyTan